Der

Microservice
Trade-Oft

Ein Artikel von

Seit 12 Jahren ist Arnold Franke fiir synyx als Software
Ingenieur, Berater und Architekt in Projekten verschiedener
Branchen unterwegs. Seine Motivation: Mit nachhaltigen
Losungen geringer Komplexitit echten Mehrwert fiir
Menschen zu schaffen.



Microservices sind eine tolle Sache, das weil3 ja inzwischen jeder. Seit dem Hype darum
hat sich diese Architekturform in der Softwareindustrie grof3flachig etabliert. Leider wird die
Entscheidung Microservices zu verwenden aber haufig aus den falschen Griinden
getroffen, was auf lange Sicht zu grof3en Problemen flhrt.

Bei dieser Entscheidung fehlt oft ein Bewusstsein fiir sowohl das tatséchliche Potential als
auch die negativen Implikationen vieler kleiner, verteilter Services. Kriterien fr die
Bewertung dieses Trade-Offs sind schwer greifbar, verbreitete Missverstandnisse
erschweren Objektivitat.

Wenn man sich die richtigen Fragen stellt, ist es dennoch mdglich die Abwagung fir oder
gegen Softwareschnitte gut informiert zu treffen und damit schrittweise eine
zweckdienliche, verteilte Systemarchitektur zu designen. Auf diese Reise begeben wir uns
auf den folgenden Seiten.

Der Artikel reflektiert den Einzug der Microservices in die Enterprise-Architektur und raumt
mit verbreiteten Missverstandnissen daruber auf. Er stellt Potential und negative
Implikationen von Softwareschnitten gegentber, um ein Bewusstsein fur den Trade-Off
~Softwareschnitt oder nicht* zu schaffen. Er gibt Architekten und Entwicklungsteams
Methoden an die Hand, um diesen Trade-Off im Einzelfall informierter entscheiden zu
konnen. Fur strategische Entscheider liefert er einen Vorschlag fur die evolutionére
Entwicklung einer Systemlandschatft als Alternative fur die riskante Entscheidung, sich von
vorne herein auf Microservices festzulegen.

Microservices - der Hype

Wer kennt das nicht in der Entwickler Community? Auf den Konferenzen, in Zeitschriften,
Blogs, Streams und Social Media wird mal wieder eine Sau durchs Dorf getrieben. Es gibt
ein neues, hippes Thema, das jeder unbedingt ausprobieren will und zu dem jeder seinen
Senf dazu geben muss. Wahrenddessen fragt sich die breite Masse der Entwickler und
Architekten: ,Ist das jetzt nur ein fliichtiger Hype oder ein Zug, auf den man tatsachlich
aufspringen sollte?” Ein Beispiel fir so einen Hype, von dem tatsachlich einiges hangen
geblieben ist, ist das Thema ,Microservices®, das in den Jahren 2015 und folgenden in
aller Munde war und die Konferenzen dominierte.

Microservices - Potential und Verbreitung

Der Kern dieser Architekturform ist, dass man grof3e Systeme nicht mehr als einen
Monolithen implementiert und deployt sondern in viele, unabhéngige Deploymenteinheiten
(,Services") zerteilt, die unabhangig voneinander geliefert werden. Diese kommunizieren
dann entkoppelt tber das Netzwerk miteinander (Abb. 1). Die dadurch gewonnene
Unabhangigkeit entfesselt neue Potentiale in Entwicklung und Betrieb des Systems:

* Unabhangiges Skalieren: Jeder Teil kann gezielt horizontal oder vertikal skaliert
werden

* Esistleichter, die einzelnen Teile in verschiedenen Teams zu entwickeln

code
X
attitude



* Man ist nicht an eine Technologie gebunden sondern kann fur jeden Teil den
passenden Stack wahlen

» Das System ist resilienter. Wenn ein Teil ausféllt, dann kann der Rest des Systems
weiter funktionieren

* Die einzelnen Teile des Systems sind leichter austauschbar

B
= L
5

—

Abb. 1: Microservices statt Monolith: Grofse Systeme werden in viele Deploymenteinheiten zerteilt,
die leichtgewichtig iiber das Netzwerk miteinander kommunizieren.

Weitere positive Eigenschaften wie saubere Modularisierung, Wartbarkeit &
Erweiterbarkeit, durchsetzen von Architekturregeln, einfache Containerisierung und CI/CD
wurden ebenfalls den Microservices zugeschrieben, sind aber keinesfalls dieser
Architekturform vorbehalten. Diese Liste der potentiellen Vorteile wurde zur Zeit des Hypes
rauf und runter gebetet, so dass der Eindruck entstand, dass es sich bei Microservices um
eine echte Silver Bullet handelt.

In der Tat fanden Microservices in den folgenden Jahren eine breite Akzeptanz in der
Software-Branche und haben sich als eine grundlegende Architekturform fur grof3e
Systeme etabliert — in vielen Unternehmen mit Erfolg. Bereits wenige Jahre nach dem
Hype konnten Umfragen der Branchengrof3en eine grof3flachige Verbreitung belegen. In
einer Nginx [1] Umfrage in 2020 gaben 60% der Unternehmen an, Microservices zu
verwenden — die Leser des O’Reilly Verlags [2] meldeten im gleichen Jahr sogar eine

code
X
attitude



Verbreitung von 77%. Seither scheint das Niveau gleichbleibend hoch, worauf z.B. eine
Gartner-Umfrage [3] von 2023 hinweist. Spannend wird es im O’Reilly Technology Trends
Report von 2025, der auf einmal einen Rickgang beim Interesse an Microservices
attestiert.

.Microservices Adoption®:

2019: 40% (Nginx) [1]

2020: 60% (Nginx) [1]

2020: 77% (O'Reilly) [2]

2020: 84% (Kong) [4]

2021: 73% (Research Nester) [5]
2023: 74% (Gartner) [3]

Missverstandnisse und Fehlannahmen

Es scheint, dass jetzt — 10 Jahre nach Beginn des Hypes — nicht nur der Hype selbst
vorbei ist sondern auch dass bei manchen Entwicklungsteams die rosarote Microservice-
Brille abgesetzt wird. Eine Ursache dafir ist, dass die Entscheidung mit Microservices zu
arbeiten oft aus den falschen Grinden getroffen wird, was schwerwiegende Auswirkungen
auf die langfristige Entwicklung der Projekte haben kann. Haufige Grundlage fur solche
falschen Entscheidungen sind eine Reihe von Missverstandnissen und Fehlannahmen
Uber Microservices, die sich aus der Zeit des Hypes noch hartnackig in den Képfen halten:

~Services mussen klein sein. Je kleiner desto besser.”

Fur viele klingt das logisch. Je mehr und je kleinere Services man hat, desto mehr profitiert
man doch von den genannten Vorteilen? Die Fehlannahmen bei dieser Aussage sind,
dass ein Schnitt in der Software ,kostenlos” ist und dass man bei jedem Schnitt
automatisch vom oben genannten Potential profitiert. Das ist leider nicht der Fall, weshalb
das ,micro* hier zum Selbstzweck verkommt.

,Viele kleine Services sind einfacher zu warten/betreiben als ein grol3er Service.”

Es ist nicht zu bestreiten, dass eine kleine Softwareeinheit leichter handhabbar ist als eine
grof3e. Dass aber durch die Abhangigkeiten und Kommunikation vieler kleiner Einheiten
die Komplexitéat steigt, wird hier aul3er Acht gelassen und fuhrt oft zum gegenteiligen
Effekt.

~Wenn wir gute ,DevOps Automatismen‘ haben, dann gibt es keinen Overhead durch mehr
Microservices."

Ohne Zweifel steckt in dieser Aussage ein Stuck Wahrheit. Ein gro3er Teil des
build/test/release/deploy Overhead lasst sich durch einen hohen Automatisierungsgrad
einsparen. Doch grol3flachige Automatisierung bekommt man nicht geschenkt sondern
muss sie sich erst mal hart erarbeiten. Und selbst die beste Automatisierung ist weder

code
X
attitude



fehler- noch wartungsfrei, so dass jedes weitere zu automatisierende Stuick Software nach
wie vor auch weiteren - wenn auch geringeren - Overhead bedeutet.

.Microservices sind der beste Weg, seine Software zu modularisieren.”

Modularisierung ist so alt wie das Handwerk der Softwareentwicklung. Es gibt unzahlige
Wege, Software zu modularisieren, wobei jeder seine eigenen Vor- und Nachteile hat.
Keiner dieser Wege kann fir sich beanspruchen, generell ,der Beste* zu sein.

.Microservices Iosen alle unsere Performance Probleme.*

Diese optimistische Hoffnung bleibt leider all zu oft unerfllt. Zwar ist gezielte Skalierung
ein probater Weg, um Bottlenecks zu weiten — allerdings ist auch diese Skalierung nicht
umsonst. Zudem ist die Ursache eines Performanceproblems haufig gar nicht durch
Skalierung losbar. Man kommt hier um Ursachenforschung und gezielte individuelle
Maflinahmen nicht herum.

~wenn wir finf Teams haben, dann bauen wir am besten fiinf Services.” (Abb.2)
Schlussfolgerungen wie diese sind eine der vielen Auspragungen von Conway'’s Law
[6].Wenn Softwarearchitektur auf der Grundlage von bestehenden Organisationsstrukturen
entsteht, dann ist das Ergebnis selten optimal. Der bessere Weg ist, zuerst eine
Architekturvision zu entwerfen und daraufhin zu Gberlegen, mit welcher Teamstruktur diese
am Besten umsetzbar ist.

Fur Architekten und Entscheider ist hier der Zeitpunkt zu hinterfragen: ,Machen wir
Microservices, weil wir mit jedem einzelnen Schnitt ein konkretes Problem adressieren und
eine Verbesserung erreichen? Oder weil wir aus einem der vermeintlich guten Griinde von
einem der Missverstéandnisse eine pauschale Entscheidung getroffen haben?*

oo
ag®
>
oo
eg® —
orae
v eg®
gl R
]
0g® o0
orgfe
0q®

Abb. 2: Conway's Law: Ein Service fiir jedes
bestehende Team. Bestehende
Organisationsstruktur ist ein schlechter Treiber
fiir Softwarearchitektur.

code
X
attitude



Die Kehrseite der Medaille

Zusatzlich zu den Missverstandnissen ist der Glaube weit verbreitet, dass es keinen
Nachteil hat, ein Stick Software in mehrere Teile zu zerschneiden. Leider ist es so, dass
man nichts geschenkt bekommt, auch keine Softwareschnitte. Es ist sehr wichtig fur alle
Beteiligten — von Entwicklungsteam bis zu strategischen Entscheidern, sich der
Implikationen eines Softwareschnitts und des damit einher gehenden Trade-Offs bewusst
zu sein. Nur so hat man eine Chance, die richtige Entscheidung zu treffen.

Beginnen wir mit dem Netzwerk. Wenn man zwei Module, die miteinander kommunizieren,
in zwei Deploymenteinheiten teilt, dann missen diese auf einmal tber das Netzwerk
kommunizieren anstatt mit einem Methodenaufruf innerhalb der Anwendung. Das bedeutet
man muss sich mit einem Protokoll der ISO/OSI Anwendungsschicht auseinandersetzen
und es beherrschen. HTTP, MQTT, AMQP oder etwas anderes? Jedes davon hat seine
eigenen Eigenheiten und Fallstricke. Zusatzlich muss auch neuer Code entstehen - Client
und Server oder Publisher und Subscriber. Weiterer Overhead entsteht durch
Serialisierung/Deserialisierung und der Abstraktion der Kommunikationsschicht. Auch das
Design der Schnittstelle ist pl6étzlich schwieriger denn anstatt einer einfachen
Methodensignatur muss man jetzt Uber API-Designparadigmen wie z.B. RESTful,
GraphQL, Eventing Patterns nachdenken. Zu guter Letzt schlagen noch die ,Fallacies of
distributed computing“ [7] zu. Kommunikation Uber das Netzwerk ist unzuverlassig. Was
passiert bei Timeouts? Braucht man Patterns wie Retries oder Circuit Breaker? Wie
werden Fehler kommuniziert? Welche Delivery-Garantien wie Reihenfolge oder ,at-least-
once” sollte es geben?

Alles in Allem macht die Kommunikation tUber das Netzwerk ein System deutlich
komplizierter, aufwandiger, fehleranfalliger und schwerer zu verstehen. Entgegen der
Intentionen vieler Microservice-Adopter wird alles dabei auch erst mal langsamer!

Weitere Herausforderungen warten im Build, Test & Deploy Umfeld. Mehr Services
bedeuten hier eine Menge Duplikation. Alle Pipelines missen dupliziert werden. Jede
Deploymenteinheit braucht ein eigenes Testsystem plus Infrastruktur. Auch
Anwendungsinfrastruktur wie Datenbanken mussen ggfs. mehrmals bereitgestellt werden.
Komplexitat der Betriebsumgebung wie z.B. Load Balancing, Instanzen,
Ressourcenzuweisung mussen fur jede Komponente bereitgestellt werden. Am Ende
purzeln statt einem einzelnen Artefakt mehrere Artefakte heraus, deren Abhangigkeiten
und Kompatibilitdt untereinander jedem Beteiligten bewusst sein missen und wieder alles
komplizierter machen.

Im Code der Services entsteht einiges an Duplikation durch geteilte Konfiguration,
Duplikation, Glue Code und Abhangigkeiten. Cross Cutting Concerns der
Systemlandschaft missen in allen Teilen konsistent gehalten werden. Die Replikation und

code
X
attitude



Synchronisation von Daten von einer Stelle an die Andere macht eine ganz neue
Komplexitatsdimension auf.

In der Masse kann man einige dieser Aspekte mit mehr Infrastruktur |6sen. Infrastructure
as Code, Kubernetes, Service Mesh, fully-fledged APl Gateways & Co lindern einige der
Probleme, fiigen aber betrachtliche Komplexitat zum Stack hinzu.

All das steigert die Cognitive Load des Teams, das die Software verantwortet, betrachtlich.
Dieser Effekt ist nicht zu vernachlassigen und kann sich vernichtend auf Fokus und
Performance des Teams niederschlagen. [8]

Die genannten Schattenseiten sollten nicht nur technische Entscheider sondern auch
geschaftliche Entscheider zum Nachdenken bringen. Kostenfaktoren wie
Entwicklungskosten, Betriebskosten und Wartungskosten werden davon ziemlich direkt in
Mitleidenschaft gezogen. Selbst Business-Aspekte, die von Microservices profitieren
sollen wie Resilienz und Time-to-Market verbessern sich dadurch nicht automatisch.

It’s a Trade-Off!

Wenn man sich diese ganzen Implikationen bewusst vor Augen flihrt, dann stellt sich die
Frage, ob es der Softwareschnitt immer noch wert ist. Oder n Softwareschnitte fur n
Microservices. Die Antwort ist wie so oft ,es kommt drauf an®. Es handelt sich hier um
einen Trade-Off und zwar um einen der schwierigeren Sorte. Denn selten ist es méglich
vorab an messbaren Kriterien festzumachen, wann sich ein Schnitt in der Software lohnt.
Dennoch gibt es Methoden, sich einer objektiv sinnvollen Entscheidung zu néhern. Es
handelt sich dabei weniger um feste Regeln als eher um Fragen, die man sich stellen
kann, um Indizien in die eine oder andere Richtung zu sammeln.

Domain Driven Design

Das Ausrichten der Softwarearchitektur an der fachlichen Doméne gilt heute als einer der
wichtigsten Erfolgsfaktoren fir grof3e und kleine Projekte. Das Domain Driven Design
(DDD) [9] gibt zahlreiche Hinweise, an welchen Stellen es sich lohnen kann, einen
Softwareschnitt einzufiihren.

Die ersten Beispiele daftr findet man im Workshop-Format ,,Event Storming” [10]. In einem
Event Storming sammelt man die Domain Events, die sich in der abzubildenden Doméane
ereignen, bringt diese in eine grobe zeitliche Struktur und reichert weitere Informationen
an. Das Ergebnis kann z.B. so aussehen wie in Abb. 3.

code
X
attitude



Abb. 3: Event Storming: Bewdhrtes Workshop-Format zur Ergriindung der eigenen Business-
Domdine

Die ersten Hinweise ergeben sich aus den Clustern von Events (Abb. 4), die offensichtlich
eng gekoppelt sind und einen so genannten ,Bounded Context” ergeben. Bounded
Contexts sind hervorragende Kandidaten fir Module in der spateren Software und je nach
Starke der Kapselung auch fur eigene Deploymenteinheiten. Man darf blof3 nicht die
Fehlannahme treffen, dass jeder Bounded Context genau ein Service sein muss. Oft ist es
sinnvoll, mehrere Bounded Contexts innerhalb einer Deploymenteinheit zu modularisieren.
In manchen Fallen kann es auch Grinde geben, einen Bounded Context auf mehrere
Deploymenteinheiten aufzuteilen.

Abb. 4: DDD Bounded Contexts — gekapselte Teile der
Domdne sind gute Kandidaten fiir Software Module

Ein weiteres Indiz fur potentielle Schnitte sind so genannte Pivotal Events (Abb. 5). Sie
markieren ein Schliisselereignis, das den Ubergang von einem groRen Prozess in einen
anderen grol3en Prozess markiert - wie der Klick auf ,Bestellung abschicken” in einem
Webshop, der den Ubergang von ,einkaufen® des Kaufers zu ,liefern“ des Handlers
bedeutet. Pivotal Events sind erstklassige Kandidaten fur Softwareschnitte, da man solche
Prozesse explizit voneinander entkoppeln mdchte.

code
X
attitude



Abb. 5: Pivotal Events: Ubergéinge zwischen Prozessteilen sind
natiirliche Sollbruchstellen fiir Softwaresysteme

Es gibt hier auch Hinweise darauf, wo man die Software lieber nicht schneiden sollte. So
genannte ,Swim Lanes" (Abb. 6) sind feste Prozessteile aus mehreren Events, die
zusammengehorig implementiert werden sollten.

ORI .
CLCLCT

Abb. 6: Swim Lanes: Zusammenhdngende Prozessteile sollten
nicht getrennt implementiert werden

Im ,strategic” Teil des DDD wird versucht zu ermitteln, welche Teile der fachlichen Doméne
strategisch wertvoller sind als andere. Man unterscheidet zwischen ,Core Domain®,
~Supporting Domain“ und ,,Generic Domain“ — je nach Komplexitat und potentiellem
Wettbewerbsvorteil der entsprechenden Subdoménen (Abb. 7). Je nach strategischer
Relevanz behandelt man die Umsetzung der einzelnen Subdomanen sehr unterschiedlich.
Die Umsetzung einer Core Domain beansprucht viel mehr Energie, Wissen und Manpower
und hat deutlich héhere Anforderungen, wahrend man die Losung einer Generic Domain
minimalistisch halt oder vielleicht sogar von der Stange kauft. Um den Anforderungen
dieses Unterschieds gerecht zu werden, kann es sich lohnen, die unterschiedlichen

code
X
attitude



Doménen nach strategischer Bedeutung auf unterschiedliche Deploymenteinheiten zu
verteilen.

High

Model
Complexity |

SUPPORTING

Low .
>

Low Business Differentiation High

Abb. 7: Core Domain Chart: Die strategische Einstufung der Subdomdnen wirkt
sich auf die Softwarearchitektur aus.

Fracture Planes

Auch abseits der fachlichen Domane gibt es eine lange Liste an Aspekten, fur die es sich
ggfs. lohnen kann, sie in einer Deploymenteinheit zu isolieren. Einige davon stammen aus
dem Buch Team Topologies [11], das fir sie den Begriff ,Fracture Planes” gepragt hat.
Also eine Art ,Sollbruchstelle” in der Software, an der sich auf natirliche Weise Schnitte
ergeben kénnen. Die Bewertung dieser Aspekte gibt Hinweise darauf, welchen Vorteil man
sich durch einen Schnitt an dieser Stelle erarbeitet. Da es sehr viele davon gibt, werden
hier nur die relevantesten aufgezahlt.

JFracture Planes”

* Performance Isolation

» Criticality

* Regulatory Compliance

* User Personas

* Technology (existing or new)

* Replacability

code
with
attitude



* Longevity

* Change Cadence

* Support Frequency
* Security

e ..o uvm.

Fracture Plane ,Performance Isolation”: Dieser Aspekt zahlt direkt auf ein der
Kernversprechen der Microservice Architektur ein, die Performance Optimierung. Wenn es
einen Teil des Systems gibt, der im Vergleich zum Rest besonders schnell sein muss oder
besonders viel Last verarbeiten muss, dann kann es vorteilhaft sein, diesen in einer
eigenen Deploymenteinheit zu isolieren. Dadurch kann man gezielt optimierende
Maflinahmen durchfihren und ggfs. horizontal oder auch vertikal skalieren, ohne dass der
Rest des Systems davon betroffen ist.

Fracture Plane ,Criticality“: Haufig gibt es in Softwaresystemen Teile, die so kritisch fur die
Domane sind, dass sie auf gar keinen Fall ausfallen dirfen. In diesem Fall kann man das
Resilienzversprechen der Microservice Architektur einlésen und die kritischen Teile in
einem eigenen Stlick Software entkoppeln. Das ermdglicht es, diese Teile durch
Redundanzen und Resilienzmechanismen so zu starken, dass sie ausfallsicherer werden
als der Rest des Systems.

Fracture Plane ,Regulatory Compliance®: Manchmal unterliegen Teile der Doméane
gesetzlichen oder organisatorischen Regularien, deren Sicherstellung erheblichen
Aufwand bedeutet. Durch die Konzentration dieser Teile in einem eigenen Service kann
man die Compliance Mechanismen auf diesen Teil beschranken und spart sich den
Aufwand in den anderen Teilen des Systems.

Fracture Plane ,User Personas”: Ein gro3es System hat oft unterschiedliche Gruppen an
Nutzern mit unterschiedlichen Anforderungen. Klassische Beispiele sind User&Admins,
Autoren&Leser, Eltern&Kinder. Es kann von Vorteil sein, spezifischen Nutzergruppen
eigene Deploymenteinheiten zur Verfigung zu stellen, um diese speziell auf die
Anforderungen der Nutzergruppe zuschneiden zu kénnen.

Fracture Plane ,Technology“: Oft ist existierende alte Technologie ein unangenehmer
Constraint in der Architektur eines Systems. Wenn man die Moglichkeit hat, die
Berthrungspunkte mit einer unschoénen, alten APl in einem Stiick Software zu isolieren,
dann kann man damit verhindern, dass deren Probleme in das neue System ruber
schwappen. In anderen Fallen setzt man bewusst unterschiedliche Technologien fur die
Umsetzung unterschiedlicher Services ein, wenn die Anforderungen so speziell sind, dass
sie durch einen spezialisierten Stack besser erflllt werden.

code
X
attitude



Fracture Plane ,Replacability“: Wenn es die Anforderung gibt, dass ein Teil der Software
leicht austauschbar sein muss, kann ein Schnitt in der Software mit standardisierter API
das ermoglichen. Auch Kurzlebigkeit kann eine Rolle spielen. Wenn von vorne herein klar
ist, dass ein Aspekt der Software in absehbarer Zukunft wieder weggeworfen wird, dann
wird das durch eine abgetrennte Deploymenteinheit vereinfacht.

Den Trade-Off bewerten

Wenn man sich das Gelesene vor Augen fuhrt, dann kann man die Einzelentscheidung
~Schnitt oder nicht* als Architekt oder umsetzendes Entwicklungsteam jetzt viel
gualifizierter treffen. Die Missverstandnisse tUber Bord werfen und sich darauf
konzentrieren, was tatsachlich relevant ist. Man kann sich bewusst machen, welche
Nachteile ein potentieller Schnitt unweigerlich impliziert. Dem gegentuber wird gesammelt,
welche potentiellen Vorteile eines Schnitts durch einzelne Fracture Planes oder die
geschickte Ausrichtung an der fachlichen Domé&ne ausgeschopft werden. Nur wenn diese
Vorteile den Aufwand und die Komplexitat eines Schnitts aufwiegen sollte man sich dafur
entscheiden.

Evolution einer Systemlandschaft

Bisher wurde hauptsachlich der Trade-Off eines einzelnen Softwareschnitts beleuchtet. In
einem grofRen System steht man allerdings nicht nur einmal vor dieser Entscheidung. Wie
wendet man das Gelernte jetzt an, um eine Architektur fur das Gesamtsystem zu
entwickeln? Es ist jetzt klar, dass es grof3e Probleme mit sich bringen kann, von vorne
herein alles in Microservices zu zerteilen. Ebenso verzichtet man auf eine Menge
Potential, wenn man sich langfristig auf einen Monolithen festlegt. Oft fuhlen sich
strategische Entscheider im Management verpflichtet, eine solche Entscheidung friihzeitig
und pauschal fur ihre Teamlandschatft zu treffen, ohne den notwendigen Kontext zu haben
und ohne die Implikationen zu kennen.

Zitate aus Strategic Monoliths and Microservices [12]

,Choosing Microservices first is dangerous. Choosing Monoliths for the long term is also
dangerous*

~,Modules first, deployment last”

Ein haufig bewahrter Mittelweg in dieser Situation ist, sich auf eine schrittweise Evolution
der Systemarchitektur einzulassen. Mit Fokus darauf, Mehrwert zu liefern anstatt sich an
der Architektur zu verkinsteln. Mit den Prinzipien der Agile Architecture eine Entscheidung
nach der anderen zu treffen.

code
X
attitude



Es empfiehlt sich, mit einer Deploymenteinheit zu beginnen und darin erst mal Features zu
implementieren, die direkt einen Mehrwert liefern. Um von vorne herein in Modulen zu
denken, bietet sich die modulithische Architektur an. Sie erreicht mit innerhalb des Codes
gekapselten Modulen bereits die Vorteile von fachlicher Kapselung, flexibler
Erweiterbarkeit und leichter Testbarkeit. Auch ein Modulith kann containerisiert werden und
von CI/CD profitieren — fur die Einhaltung von Architekturregeln kdnnen Tools wie Archunit
[13] oder Spring Modulith [14] sorgen. Mehr Details, Tooling und Codebeispiele sind in der
Artikelserie ,Architekturpatterns in Modulithen” [15] zu finden.

Wahrend der Weiterentwicklung wird man immer wieder an Stellen kommen, die Potential
fur die Abtrennung einer Deploymenteinheit haben. Mit den oben genannten Methoden
wird der Trade-Off daflr bewertet und danach die Entscheidung fur oder gegen den
Schnitt getroffen. Im Zweifelsfall verschiebt man diese schwierig riickgangig zu machende
Entscheidung auf einen spéateren Zeitpunkt, zu dem man mehr tUber das System weif3. In
einem sauberen Modulithen sollte es auch spater problemlos méglich sein, ein Modul in
eine neue Deploymenteinheit auszulagern. So entwickelt sich auf natirliche Weise nach
und nach eine Landschaft aus Komponenten mit bewusst isolierten Aspekten und
Schnitten, die klare Zwecke haben. Die Menge des Overheads durch viele Komponenten
und Netzwerkkommunikation bleibt so minimal wie méglich aber so grol3 wie ndétig.

Bei diesem fortwadhrenden Prozess ist es unabdingbar, jede dieser Entscheidungen
grundlich zu dokumentieren. Die Abwagung jedes Trade-Offs und der Zweck jedes
Schnitts (oder nicht-Schnitts) sollte jederzeit nachvollziehbar sein. In der agilen Architektur
ist es gang und gabe, vergangene Entscheidungen bei Bedarf neu zu bewerten, wobei
eine solche Dokumentation (beispielsweise in ADRs [16]) unschatzbaren Wert hat.

Sind Microservices jetzt toll oder nicht?

Am Ende dieses Artikels sollte nun klar sein, dass diese Frage zu komplex ist, um sie
pauschal zu beantworten. Das Potential von Microservices auszuschopfen ist nicht einfach
und blind hinein zu tauchen birgt viele Probleme. Mit Hilfe von DDD und Fracture Planes
sowie einem agilen Architekturansatz gelingt es dennoch, von den richtigen Schnitten an
den richtigen Stellen zu profitieren, ohne die Komplexitat explodieren zu lassen.

Der aufmerksame Leser wird bemerkt haben, dass der Artikel kein Pladoyer fur oder
gegen Microservices ist. Eher ein Pladoyer gegen blinde Entscheidungen und fur
bewusstes und zweckorientiertes Architekturdesign. Fir Nachdenken uber tatsachliche
Probleme und Erarbeitung gezielter Losungen. Fur Agilitdt und nachhaltiges Arbeiten im
Sinne von langlebiger Software. So erreicht man das, worauf es wirklich ankommt:
Software, die von Anfang bis Ende kontinuierlich Mehrwert liefert und langfristig flexibel
und erfolgreich bleibt.

code
X
attitude



Literaturverzeichnis

[1]: Nginx, The State of Modern App Delivery, 2020, https://www.f5.com/pdf/infographic/NGINX-
survey-infographic 2020.pdf

[2]: Mike Loukides and Steve Swoyer, Microservice Adoption in 2020, 2020,
https://www.oreilly.com/radar/microservices-adoption-in-2020/

[3]: Gartner Peer Community, Microservices Architecture: Have Engineering Organizations Found
Success?, 2023, https://www.gartner.com/peer-community/oneminuteinsights/omi-microservices-
architecture-have-engineering-organizations-found-success-u6b

[4]: Kong Inc., Kong 2020 Digital Innovation Benchmark, , https://kong-mwe-web-assets.s3-
accelerate.amazonaws.com/wp-content/uploads/2019/12/Digital-Innovation-Benchmark-2020-
Report.pdf

[5]: Preeti Wani, Microservices Orchestration Market, 2025,
https://www.researchnester.com/reports/microservices-orchestration-market/6991

[6]: Melvin Conway, Conway's Law, 1967, https://www.melconway.com/Home/Conways Law.html
[7]: Peter Deutsch, The Eight Fallacies of Distributed Computing, 1994,
https://nighthacks.com/jag/res/Fallacies.html

[8]: Arnold Franke, Team Cognitive Load, Objektspektrum 01/2022,
https://media.synyx.de/publications/Arnold Franke Team Cognitive I.oad.pdf

[9]: DDD Crew, Welcome to DDD, 2022, https://github.com/ddd-crew/welcome-to-ddd

[10]: Alberto Brandolini, Event Storming, 2021

[11]: Matthew Skelton, Manuel Pais, Team Topologies, 2019

[12]: Vaughn Vernon, Tomasz Jaskula, Strategic Monoliths and Microservices, 2021

[13]: TNG Technology Consulting, ArchUnit, 2025, https://www.archunit.org/

[14]: Oliver Drotbohm, Spring Modulith, 2025, https://spring.io/projects/spring-modulith

[15]: Arnold Franke, Architekturpatterns in Modulithen, Java Magazin 12/20+01/21+02/21,
https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-1.pdf,
https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-2.pdf,
https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-3.pdf

[16]: Oliver Fischer, Gut dokumentiert: Architecture Decision Records, 2020,
https://www.heise.de/hintergrund/Gut-dokumentiert-Architecture-Decision-Records-4664988.html

code
X
attitude


https://www.f5.com/pdf/infographic/NGINX-survey-infographic_2020.pdf
https://www.f5.com/pdf/infographic/NGINX-survey-infographic_2020.pdf
https://www.heise.de/hintergrund/Gut-dokumentiert-Architecture-Decision-Records-4664988.html
https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-1.pdf,%20https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-2.pdf,%20https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-3.pdf
https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-1.pdf,%20https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-2.pdf,%20https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-3.pdf
https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-1.pdf,%20https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-2.pdf,%20https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-3.pdf
https://spring.io/projects/spring-modulith
https://www.archunit.org/
https://github.com/ddd-crew/welcome-to-ddd
https://media.synyx.de/publications/Arnold_Franke_Team_Cognitive_Load.pdf
https://nighthacks.com/jag/res/Fallacies.html
https://www.melconway.com/Home/Conways_Law.html
https://www.researchnester.com/reports/microservices-orchestration-market/6991
https://kong-mwe-web-assets.s3-accelerate.amazonaws.com/wp-content/uploads/2019/12/Digital-Innovation-Benchmark-2020-Report.pdf
https://kong-mwe-web-assets.s3-accelerate.amazonaws.com/wp-content/uploads/2019/12/Digital-Innovation-Benchmark-2020-Report.pdf
https://kong-mwe-web-assets.s3-accelerate.amazonaws.com/wp-content/uploads/2019/12/Digital-Innovation-Benchmark-2020-Report.pdf
https://www.gartner.com/peer-community/oneminuteinsights/omi-microservices-architecture-have-engineering-organizations-found-success-u6b
https://www.gartner.com/peer-community/oneminuteinsights/omi-microservices-architecture-have-engineering-organizations-found-success-u6b
https://www.oreilly.com/radar/microservices-adoption-in-2020/

