
Der 
Microservice 
Trade-Off
Weighting the benefits and 
downsides of slicing your software

Ein Artikel von Arnold Franke

Seit 12 Jahren ist Arnold Franke für synyx als Software 
Ingenieur, Berater und Architekt in Projekten verschiedener 
Branchen unterwegs. Seine Motivation: Mit nachhaltigen 
Lösungen geringer Komplexität echten Mehrwert für 
Menschen zu schaffen. 



Microservices sind eine tolle Sache, das weiß ja inzwischen jeder. Seit dem Hype darum 
hat sich diese Architekturform in der Softwareindustrie großflächig etabliert. Leider wird die 
Entscheidung Microservices zu verwenden aber häufig aus den falschen Gründen 
getroffen, was auf lange Sicht zu großen Problemen führt. 

Bei dieser Entscheidung fehlt oft ein Bewusstsein für sowohl das tatsächliche Potential als 
auch die negativen Implikationen vieler kleiner, verteilter Services. Kriterien für die 
Bewertung dieses Trade-Offs sind schwer greifbar, verbreitete Missverständnisse 
erschweren Objektivität.

Wenn man sich die richtigen Fragen stellt, ist es dennoch möglich die Abwägung für oder 
gegen Softwareschnitte gut informiert zu treffen und damit schrittweise eine 
zweckdienliche, verteilte Systemarchitektur zu designen. Auf diese Reise begeben wir uns 
auf den folgenden Seiten.

Der Artikel reflektiert den Einzug der Microservices in die Enterprise-Architektur und räumt 
mit verbreiteten Missverständnissen darüber auf. Er stellt Potential und negative 
Implikationen von Softwareschnitten gegenüber, um ein Bewusstsein für den Trade-Off 
„Softwareschnitt oder nicht“ zu schaffen. Er gibt Architekten und Entwicklungsteams 
Methoden an die Hand, um diesen Trade-Off im Einzelfall informierter entscheiden zu 
können. Für strategische Entscheider liefert er einen Vorschlag für die evolutionäre 
Entwicklung einer Systemlandschaft als Alternative für die riskante Entscheidung, sich von 
vorne herein auf Microservices festzulegen.

Microservices – der Hype

Wer kennt das nicht in der Entwickler Community? Auf den Konferenzen, in Zeitschriften, 
Blogs, Streams und Social Media wird mal wieder eine Sau durchs Dorf getrieben. Es gibt 
ein neues, hippes Thema, das jeder unbedingt ausprobieren will und zu dem jeder seinen 
Senf dazu geben muss. Währenddessen fragt sich die breite Masse der Entwickler und 
Architekten: „Ist das jetzt nur ein flüchtiger Hype oder ein Zug, auf den man tatsächlich 
aufspringen sollte?“ Ein Beispiel für so einen Hype, von dem tatsächlich einiges hängen 
geblieben ist, ist das Thema „Microservices“, das in den Jahren 2015 und folgenden in 
aller Munde war und die Konferenzen dominierte.

Microservices – Potential und Verbreitung

Der Kern dieser Architekturform ist, dass man große Systeme nicht mehr als einen 
Monolithen implementiert und deployt sondern in viele, unabhängige Deploymenteinheiten 
(„Services“) zerteilt, die unabhängig voneinander geliefert werden. Diese kommunizieren 
dann entkoppelt über das Netzwerk miteinander (Abb. 1). Die dadurch gewonnene 
Unabhängigkeit entfesselt neue Potentiale in Entwicklung und Betrieb des Systems:

• Unabhängiges Skalieren: Jeder Teil kann gezielt horizontal oder vertikal skaliert 
werden

• Es ist leichter, die einzelnen Teile in verschiedenen Teams zu entwickeln



• Man ist nicht an eine Technologie gebunden sondern kann für jeden Teil den 
passenden Stack wählen

• Das System ist resilienter. Wenn ein Teil ausfällt, dann kann der Rest des Systems 
weiter funktionieren

• Die einzelnen Teile des Systems sind leichter austauschbar

Weitere positive Eigenschaften wie saubere Modularisierung, Wartbarkeit & 
Erweiterbarkeit, durchsetzen von Architekturregeln, einfache Containerisierung und CI/CD 
wurden ebenfalls den Microservices zugeschrieben, sind aber keinesfalls dieser 
Architekturform vorbehalten. Diese Liste der potentiellen Vorteile wurde zur Zeit des Hypes 
rauf und runter gebetet, so dass der Eindruck entstand, dass es sich bei Microservices um 
eine echte Silver Bullet handelt.

In der Tat fanden Microservices in den folgenden Jahren eine breite Akzeptanz in der 
Software-Branche und haben sich als eine grundlegende Architekturform für große 
Systeme etabliert – in vielen Unternehmen mit Erfolg. Bereits wenige Jahre nach dem 
Hype konnten Umfragen der Branchengrößen eine großflächige Verbreitung belegen. In 
einer Nginx [1] Umfrage in 2020 gaben 60% der Unternehmen an, Microservices zu 
verwenden – die Leser des O’Reilly Verlags [2] meldeten im gleichen Jahr sogar eine 

Abb. 1: Microservices statt Monolith: Große Systeme werden in viele Deploymenteinheiten zerteilt, 
die leichtgewichtig über das Netzwerk miteinander kommunizieren.



Verbreitung von 77%. Seither scheint das Niveau gleichbleibend hoch, worauf z.B. eine 
Gartner-Umfrage [3] von 2023 hinweist. Spannend wird es im O’Reilly Technology Trends 
Report von 2025, der auf einmal einen Rückgang beim Interesse an Microservices 
attestiert.

„Microservices Adoption“:

2019: 40% (Nginx) [1]
2020: 60% (Nginx) [1]
2020: 77% (O’Reilly) [2]
2020: 84% (Kong) [4]
2021: 73% (Research Nester) [5]
2023: 74% (Gartner) [3]

Missverständnisse und Fehlannahmen

Es scheint, dass jetzt – 10 Jahre nach Beginn des Hypes – nicht nur der Hype selbst 
vorbei ist sondern auch dass bei manchen Entwicklungsteams die rosarote Microservice-
Brille abgesetzt wird. Eine Ursache dafür ist, dass die Entscheidung mit Microservices zu 
arbeiten oft aus den falschen Gründen getroffen wird, was schwerwiegende Auswirkungen 
auf die langfristige Entwicklung der Projekte haben kann. Häufige Grundlage für solche 
falschen Entscheidungen sind eine Reihe von Missverständnissen und Fehlannahmen 
über Microservices, die sich aus der Zeit des Hypes noch hartnäckig in den Köpfen halten:

„Services müssen klein sein. Je kleiner desto besser.“ 
Für viele klingt das logisch. Je mehr und je kleinere Services man hat, desto mehr profitiert 
man doch von den genannten Vorteilen? Die Fehlannahmen bei dieser Aussage sind, 
dass ein Schnitt in der Software „kostenlos“ ist und dass man bei jedem Schnitt 
automatisch vom oben genannten Potential profitiert. Das ist leider nicht der Fall, weshalb 
das „micro“ hier zum Selbstzweck verkommt.

„Viele kleine Services sind einfacher zu warten/betreiben als ein großer Service.“ 
Es ist nicht zu bestreiten, dass eine kleine Softwareeinheit leichter handhabbar ist als eine 
große. Dass aber durch die Abhängigkeiten und Kommunikation vieler kleiner Einheiten 
die Komplexität steigt, wird hier außer Acht gelassen und führt oft zum gegenteiligen 
Effekt.

„Wenn wir gute ‚DevOps Automatismen‘ haben, dann gibt es keinen Overhead durch mehr 
Microservices.“ 
Ohne Zweifel steckt in dieser Aussage ein Stück Wahrheit. Ein großer Teil des 
build/test/release/deploy Overhead lässt sich durch einen hohen Automatisierungsgrad 
einsparen. Doch großflächige Automatisierung bekommt man nicht geschenkt sondern 
muss sie sich erst mal hart erarbeiten. Und selbst die beste Automatisierung ist weder 



fehler- noch wartungsfrei, so dass jedes weitere zu automatisierende Stück Software nach 
wie vor auch weiteren - wenn auch geringeren - Overhead bedeutet.

„Microservices sind der beste Weg, seine Software zu modularisieren.“
Modularisierung ist so alt wie das Handwerk der Softwareentwicklung. Es gibt unzählige 
Wege, Software zu modularisieren, wobei jeder seine eigenen Vor- und Nachteile hat. 
Keiner dieser Wege kann für sich beanspruchen, generell „der Beste“ zu sein.

„Microservices lösen alle unsere Performance Probleme.“
Diese optimistische Hoffnung bleibt leider all zu oft unerfüllt. Zwar ist gezielte Skalierung 
ein probater Weg, um Bottlenecks zu weiten – allerdings ist auch diese Skalierung nicht 
umsonst. Zudem ist die Ursache eines Performanceproblems häufig gar nicht durch 
Skalierung lösbar. Man kommt hier um Ursachenforschung und gezielte individuelle 
Maßnahmen nicht herum. 

„Wenn wir fünf Teams haben, dann bauen wir am besten fünf Services.“ (Abb.2)
Schlussfolgerungen wie diese sind eine der vielen Ausprägungen von Conway’s Law 
[6].Wenn Softwarearchitektur auf der Grundlage von bestehenden Organisationsstrukturen 
entsteht, dann ist das Ergebnis selten optimal. Der bessere Weg ist, zuerst eine 
Architekturvision zu entwerfen und daraufhin zu überlegen, mit welcher Teamstruktur diese 
am Besten umsetzbar ist.

Für Architekten und Entscheider ist hier der Zeitpunkt zu hinterfragen: „Machen wir 
Microservices, weil wir mit jedem einzelnen Schnitt ein konkretes Problem adressieren und 
eine Verbesserung erreichen? Oder weil wir aus einem der vermeintlich guten Gründe von 
einem der Missverständnisse eine pauschale Entscheidung getroffen haben?“

Abb. 2: Conway's Law: Ein Service für jedes 
bestehende Team. Bestehende 
Organisationsstruktur ist ein schlechter Treiber 
für Softwarearchitektur.



Die Kehrseite der Medaille

Zusätzlich zu den Missverständnissen ist der Glaube weit verbreitet, dass es keinen 
Nachteil hat, ein Stück Software in mehrere Teile zu zerschneiden. Leider ist es so, dass 
man nichts geschenkt bekommt, auch keine Softwareschnitte. Es ist sehr wichtig für alle 
Beteiligten – von Entwicklungsteam bis zu strategischen Entscheidern, sich der 
Implikationen eines Softwareschnitts und des damit einher gehenden Trade-Offs bewusst 
zu sein. Nur so hat man eine Chance, die richtige Entscheidung zu treffen.

Beginnen wir mit dem Netzwerk. Wenn man zwei Module, die miteinander kommunizieren, 
in zwei Deploymenteinheiten teilt, dann müssen diese auf einmal über das Netzwerk 
kommunizieren anstatt mit einem Methodenaufruf innerhalb der Anwendung. Das bedeutet 
man muss sich mit einem Protokoll der ISO/OSI Anwendungsschicht auseinandersetzen 
und es beherrschen. HTTP, MQTT, AMQP oder etwas anderes? Jedes davon hat seine 
eigenen Eigenheiten und Fallstricke. Zusätzlich muss auch neuer Code entstehen - Client 
und Server oder Publisher und Subscriber. Weiterer Overhead entsteht durch 
Serialisierung/Deserialisierung und der Abstraktion der Kommunikationsschicht. Auch das 
Design der Schnittstelle ist plötzlich schwieriger denn anstatt einer einfachen 
Methodensignatur muss man jetzt über API-Designparadigmen wie z.B. RESTful, 
GraphQL, Eventing Patterns nachdenken. Zu guter Letzt schlagen noch die „Fallacies of 
distributed computing“ [7] zu. Kommunikation über das Netzwerk ist unzuverlässig. Was 
passiert bei Timeouts? Braucht man Patterns wie Retries oder Circuit Breaker? Wie 
werden Fehler kommuniziert? Welche Delivery-Garantien wie Reihenfolge oder „at-least-
once“ sollte es geben?
Alles in Allem macht die Kommunikation über das Netzwerk ein System deutlich 
komplizierter, aufwändiger, fehleranfälliger und schwerer zu verstehen. Entgegen der 
Intentionen vieler Microservice-Adopter wird alles dabei auch erst mal langsamer!

Weitere Herausforderungen warten im Build, Test & Deploy Umfeld. Mehr Services 
bedeuten hier eine Menge Duplikation. Alle Pipelines müssen dupliziert werden. Jede 
Deploymenteinheit braucht ein eigenes Testsystem plus Infrastruktur. Auch 
Anwendungsinfrastruktur wie Datenbanken müssen ggfs. mehrmals bereitgestellt werden. 
Komplexität der Betriebsumgebung wie z.B. Load Balancing, Instanzen, 
Ressourcenzuweisung müssen für jede Komponente bereitgestellt werden. Am Ende 
purzeln statt einem einzelnen Artefakt mehrere Artefakte heraus, deren Abhängigkeiten 
und Kompatibilität untereinander jedem Beteiligten bewusst sein müssen und wieder alles 
komplizierter machen.

Im Code der Services entsteht einiges an Duplikation durch geteilte Konfiguration, 
Duplikation, Glue Code und Abhängigkeiten. Cross Cutting Concerns der 
Systemlandschaft müssen in allen Teilen konsistent gehalten werden. Die Replikation und 



Synchronisation von Daten von einer Stelle an die Andere macht eine ganz neue 
Komplexitätsdimension auf. 

In der Masse kann man einige dieser Aspekte mit mehr Infrastruktur lösen. Infrastructure 
as Code, Kubernetes, Service Mesh, fully-fledged API Gateways & Co lindern einige der 
Probleme, fügen aber beträchtliche Komplexität zum Stack hinzu.

All das steigert die Cognitive Load des Teams, das die Software verantwortet, beträchtlich. 
Dieser Effekt ist nicht zu vernachlässigen und kann sich vernichtend auf Fokus und 
Performance des Teams niederschlagen. [8]

Die genannten Schattenseiten sollten nicht nur technische Entscheider sondern auch 
geschäftliche Entscheider zum Nachdenken bringen. Kostenfaktoren wie 
Entwicklungskosten, Betriebskosten und Wartungskosten werden davon ziemlich direkt in 
Mitleidenschaft gezogen. Selbst Business-Aspekte, die von Microservices profitieren 
sollen wie Resilienz und Time-to-Market verbessern sich dadurch nicht automatisch.

It’s a Trade-Off!

Wenn man sich diese ganzen Implikationen bewusst vor Augen führt, dann stellt sich die 
Frage, ob es der Softwareschnitt immer noch wert ist. Oder n Softwareschnitte für n 
Microservices. Die Antwort ist wie so oft „es kommt drauf an“. Es handelt sich hier um 
einen Trade-Off und zwar um einen der schwierigeren Sorte. Denn selten ist es möglich 
vorab an messbaren Kriterien festzumachen, wann sich ein Schnitt in der Software lohnt. 
Dennoch gibt es Methoden, sich einer objektiv sinnvollen Entscheidung zu nähern. Es 
handelt sich dabei weniger um feste Regeln als eher um Fragen, die man sich stellen 
kann, um Indizien in die eine oder andere Richtung zu sammeln.

Domain Driven Design

Das Ausrichten der Softwarearchitektur an der fachlichen Domäne gilt heute als einer der 
wichtigsten Erfolgsfaktoren für große und kleine Projekte. Das Domain Driven Design 
(DDD) [9] gibt zahlreiche Hinweise, an welchen Stellen es sich lohnen kann, einen 
Softwareschnitt einzuführen.

Die ersten Beispiele dafür findet man im Workshop-Format „Event Storming“ [10]. In einem 
Event Storming sammelt man die Domain Events, die sich in der abzubildenden Domäne 
ereignen, bringt diese in eine grobe zeitliche Struktur und reichert weitere Informationen 
an. Das Ergebnis kann z.B. so aussehen wie in Abb. 3.



Die ersten Hinweise ergeben sich aus den Clustern von Events (Abb. 4), die offensichtlich 
eng gekoppelt sind und einen so genannten „Bounded Context“ ergeben. Bounded 
Contexts sind hervorragende Kandidaten für Module in der späteren Software und je nach 
Stärke der Kapselung auch für eigene Deploymenteinheiten. Man darf bloß nicht die 
Fehlannahme treffen, dass jeder Bounded Context genau ein Service sein muss. Oft ist es 
sinnvoll, mehrere Bounded Contexts innerhalb einer Deploymenteinheit zu modularisieren. 
In manchen Fällen kann es auch Gründe geben, einen Bounded Context auf mehrere 
Deploymenteinheiten aufzuteilen.

Abb. 4: DDD Bounded Contexts – gekapselte Teile der 
Domäne sind gute Kandidaten für Software Module

Ein weiteres Indiz für potentielle Schnitte sind so genannte Pivotal Events (Abb. 5). Sie 
markieren ein Schlüsselereignis, das den Übergang von einem großen Prozess in einen 
anderen großen Prozess markiert - wie der Klick auf „Bestellung abschicken“ in einem 
Webshop, der den Übergang von „einkaufen“ des Käufers zu „liefern“ des Händlers 
bedeutet. Pivotal Events sind erstklassige Kandidaten für Softwareschnitte, da man solche 
Prozesse explizit voneinander entkoppeln möchte.

Abb. 3: Event Storming: Bewährtes Workshop-Format zur Ergründung der eigenen Business-
Domäne



Abb. 5: Pivotal Events: Übergänge zwischen Prozessteilen sind 
natürliche Sollbruchstellen für Softwaresysteme

Es gibt hier auch Hinweise darauf, wo man die Software lieber nicht schneiden sollte. So 
genannte „Swim Lanes“ (Abb. 6) sind feste Prozessteile aus mehreren Events, die 
zusammengehörig implementiert werden sollten.

Abb. 6: Swim Lanes: Zusammenhängende Prozessteile sollten 
nicht getrennt implementiert werden

Im „strategic“ Teil des DDD wird versucht zu ermitteln, welche Teile der fachlichen Domäne 
strategisch wertvoller sind als andere. Man unterscheidet zwischen „Core Domain“, 
„Supporting Domain“ und „Generic Domain“ – je nach Komplexität und potentiellem 
Wettbewerbsvorteil der entsprechenden Subdomänen (Abb. 7). Je nach strategischer 
Relevanz behandelt man die Umsetzung der einzelnen Subdomänen sehr unterschiedlich. 
Die Umsetzung einer Core Domain beansprucht viel mehr Energie, Wissen und Manpower 
und hat deutlich höhere Anforderungen, während man die Lösung einer Generic Domain 
minimalistisch hält oder vielleicht sogar von der Stange kauft. Um den Anforderungen 
dieses Unterschieds gerecht zu werden, kann es sich lohnen, die unterschiedlichen 



Domänen nach strategischer Bedeutung auf unterschiedliche Deploymenteinheiten zu 
verteilen.

Fracture Planes

Auch abseits der fachlichen Domäne gibt es eine lange Liste an Aspekten, für die es sich 
ggfs. lohnen kann, sie in einer Deploymenteinheit zu isolieren. Einige davon stammen aus 
dem Buch Team Topologies [11], das für sie den Begriff „Fracture Planes“ geprägt hat. 
Also eine Art „Sollbruchstelle“ in der Software, an der sich auf natürliche Weise Schnitte 
ergeben können. Die Bewertung dieser Aspekte gibt Hinweise darauf, welchen Vorteil man 
sich durch einen Schnitt an dieser Stelle erarbeitet. Da es sehr viele davon gibt, werden 
hier nur die relevantesten aufgezählt.

„Fracture Planes“

• Performance Isolation

• Criticality

• Regulatory Compliance

• User Personas

• Technology (existing or new)

• Replacability

Abb. 7: Core Domain Chart: Die strategische Einstufung der Subdomänen wirkt 
sich auf die Softwarearchitektur aus.



• Longevity

• Change Cadence

• Support Frequency

• Security

• … u.v.m.

Fracture Plane „Performance Isolation“: Dieser Aspekt zahlt direkt auf ein der 
Kernversprechen der Microservice Architektur ein, die Performance Optimierung. Wenn es 
einen Teil des Systems gibt, der im Vergleich zum Rest besonders schnell sein muss oder 
besonders viel Last verarbeiten muss, dann kann es vorteilhaft sein, diesen in einer 
eigenen Deploymenteinheit zu isolieren. Dadurch kann man gezielt optimierende 
Maßnahmen durchführen und ggfs. horizontal oder auch vertikal skalieren, ohne dass der 
Rest des Systems davon betroffen ist.

Fracture Plane „Criticality“: Häufig gibt es in Softwaresystemen Teile, die so kritisch für die 
Domäne sind, dass sie auf gar keinen Fall ausfallen dürfen. In diesem Fall kann man das 
Resilienzversprechen der Microservice Architektur einlösen und die kritischen Teile in 
einem eigenen Stück Software entkoppeln. Das ermöglicht es, diese Teile durch 
Redundanzen und Resilienzmechanismen so zu stärken, dass sie ausfallsicherer werden 
als der Rest des Systems.

Fracture Plane „Regulatory Compliance“: Manchmal unterliegen Teile der Domäne 
gesetzlichen oder organisatorischen Regularien, deren Sicherstellung erheblichen 
Aufwand bedeutet. Durch die Konzentration dieser Teile in einem eigenen Service kann 
man die Compliance Mechanismen auf diesen Teil beschränken und spart sich den 
Aufwand in den anderen Teilen des Systems.

Fracture Plane „User Personas“: Ein großes System hat oft unterschiedliche Gruppen an 
Nutzern mit unterschiedlichen Anforderungen. Klassische Beispiele sind User&Admins, 
Autoren&Leser, Eltern&Kinder. Es kann von Vorteil sein, spezifischen Nutzergruppen 
eigene Deploymenteinheiten zur Verfügung zu stellen, um diese speziell auf die 
Anforderungen der Nutzergruppe zuschneiden zu können.

Fracture Plane „Technology“: Oft ist existierende alte Technologie ein unangenehmer 
Constraint in der Architektur eines Systems. Wenn man die Möglichkeit hat, die 
Berührungspunkte mit einer unschönen, alten API in einem Stück Software zu isolieren, 
dann kann man damit verhindern, dass deren Probleme in das neue System rüber 
schwappen. In anderen Fällen setzt man bewusst unterschiedliche Technologien für die 
Umsetzung unterschiedlicher Services ein, wenn die Anforderungen so speziell sind, dass 
sie durch einen spezialisierten Stack besser erfüllt werden.



Fracture Plane „Replacability“: Wenn es die Anforderung gibt, dass ein Teil der Software 
leicht austauschbar sein muss, kann ein Schnitt in der Software mit standardisierter API 
das ermöglichen. Auch Kurzlebigkeit kann eine Rolle spielen. Wenn von vorne herein klar 
ist, dass ein Aspekt der Software in absehbarer Zukunft wieder weggeworfen wird, dann 
wird das durch eine abgetrennte Deploymenteinheit vereinfacht.

Den Trade-Off bewerten

Wenn man sich das Gelesene vor Augen führt, dann kann man die Einzelentscheidung 
„Schnitt oder nicht“ als Architekt oder umsetzendes Entwicklungsteam jetzt viel 
qualifizierter treffen. Die Missverständnisse über Bord werfen und sich darauf 
konzentrieren, was tatsächlich relevant ist. Man kann sich bewusst machen, welche 
Nachteile ein potentieller Schnitt unweigerlich impliziert. Dem gegenüber wird gesammelt, 
welche potentiellen Vorteile eines Schnitts durch einzelne Fracture Planes oder die 
geschickte Ausrichtung an der fachlichen Domäne ausgeschöpft werden. Nur wenn diese 
Vorteile den Aufwand und die Komplexität eines Schnitts aufwiegen sollte man sich dafür 
entscheiden. 

Evolution einer Systemlandschaft

Bisher wurde hauptsächlich der Trade-Off eines einzelnen Softwareschnitts beleuchtet. In 
einem großen System steht man allerdings nicht nur einmal vor dieser Entscheidung. Wie 
wendet man das Gelernte jetzt an, um eine Architektur für das Gesamtsystem zu 
entwickeln? Es ist jetzt klar, dass es große Probleme mit sich bringen kann, von vorne 
herein alles in Microservices zu zerteilen. Ebenso verzichtet man auf eine Menge 
Potential, wenn man sich langfristig auf einen Monolithen festlegt. Oft fühlen sich 
strategische Entscheider im Management verpflichtet, eine solche Entscheidung frühzeitig 
und pauschal für ihre Teamlandschaft zu treffen, ohne den notwendigen Kontext zu haben 
und ohne die Implikationen zu kennen.

Zitate aus Strategic Monoliths and Microservices [12]

„Choosing Microservices first is dangerous. Choosing Monoliths for the long term is also 
dangerous“

„Modules first, deployment last“

Ein häufig bewährter Mittelweg in dieser Situation ist, sich auf eine schrittweise Evolution 
der Systemarchitektur einzulassen. Mit Fokus darauf, Mehrwert zu liefern anstatt sich an 
der Architektur zu verkünsteln. Mit den Prinzipien der Agile Architecture eine Entscheidung 
nach der anderen zu treffen.



Es empfiehlt sich, mit einer Deploymenteinheit zu beginnen und darin erst mal Features zu 
implementieren, die direkt einen Mehrwert liefern. Um von vorne herein in Modulen zu 
denken, bietet sich die modulithische Architektur an. Sie erreicht mit innerhalb des Codes 
gekapselten Modulen bereits die Vorteile von fachlicher Kapselung, flexibler 
Erweiterbarkeit und leichter Testbarkeit. Auch ein Modulith kann containerisiert werden und 
von CI/CD profitieren – für die Einhaltung von Architekturregeln können Tools wie Archunit 
[13] oder Spring Modulith [14] sorgen. Mehr Details, Tooling und Codebeispiele sind in der 
Artikelserie „Architekturpatterns in Modulithen“ [15] zu finden.

Während der Weiterentwicklung wird man immer wieder an Stellen kommen, die Potential 
für die Abtrennung einer Deploymenteinheit haben. Mit den oben genannten Methoden 
wird der Trade-Off dafür bewertet und danach die Entscheidung für oder gegen den 
Schnitt getroffen. Im Zweifelsfall verschiebt man diese schwierig rückgängig zu machende 
Entscheidung auf einen späteren Zeitpunkt, zu dem man mehr über das System weiß. In 
einem sauberen Modulithen sollte es auch später problemlos möglich sein, ein Modul in 
eine neue Deploymenteinheit auszulagern. So entwickelt sich auf natürliche Weise nach 
und nach eine Landschaft aus Komponenten mit bewusst isolierten Aspekten und 
Schnitten, die klare Zwecke haben. Die Menge des Overheads durch viele Komponenten 
und Netzwerkkommunikation bleibt so minimal wie möglich aber so groß wie nötig.

Bei diesem fortwährenden Prozess ist es unabdingbar, jede dieser Entscheidungen 
gründlich zu dokumentieren. Die Abwägung jedes Trade-Offs und der Zweck jedes 
Schnitts (oder nicht-Schnitts) sollte jederzeit nachvollziehbar sein. In der agilen Architektur 
ist es gang und gäbe, vergangene Entscheidungen bei Bedarf neu zu bewerten, wobei 
eine solche Dokumentation (beispielsweise in ADRs [16]) unschätzbaren Wert hat.

Sind Microservices jetzt toll oder nicht?

Am Ende dieses Artikels sollte nun klar sein, dass diese Frage zu komplex ist, um sie 
pauschal zu beantworten. Das Potential von Microservices auszuschöpfen ist nicht einfach 
und blind hinein zu tauchen birgt viele Probleme. Mit Hilfe von DDD und Fracture Planes 
sowie einem agilen Architekturansatz gelingt es dennoch, von den richtigen Schnitten an 
den richtigen Stellen zu profitieren, ohne die Komplexität explodieren zu lassen.

Der aufmerksame Leser wird bemerkt haben, dass der Artikel kein Plädoyer für oder 
gegen Microservices ist. Eher ein Plädoyer gegen blinde Entscheidungen und für 
bewusstes und zweckorientiertes Architekturdesign. Für Nachdenken über tatsächliche 
Probleme und Erarbeitung gezielter Lösungen. Für Agilität und nachhaltiges Arbeiten im 
Sinne von langlebiger Software. So erreicht man das, worauf es wirklich ankommt: 
Software, die von Anfang bis Ende kontinuierlich Mehrwert liefert und langfristig flexibel 
und erfolgreich bleibt.



Literaturverzeichnis
[1]: Nginx, The State of Modern App Delivery, 2020, https://www.f5.com/pdf/infographic/NGINX-
survey-infographic_2020.pdf
[2]: Mike Loukides and Steve Swoyer, Microservice Adoption in 2020, 2020, 
https://www.oreilly.com/radar/microservices-adoption-in-2020/
[3]: Gartner Peer Community, Microservices Architecture: Have Engineering Organizations Found 
Success?, 2023, https://www.gartner.com/peer-community/oneminuteinsights/omi-microservices-
architecture-have-engineering-organizations-found-success-u6b
[4]: Kong Inc., Kong 2020 Digital Innovation Benchmark, , https://kong-mwe-web-assets.s3-
accelerate.amazonaws.com/wp-content/uploads/2019/12/Digital-Innovation-Benchmark-2020-
Report.pdf
[5]: Preeti Wani, Microservices Orchestration Market, 2025, 
https://www.researchnester.com/reports/microservices-orchestration-market/6991
[6]: Melvin Conway, Conway's Law, 1967, https://www.melconway.com/Home/Conways_Law.html
[7]: Peter Deutsch, The Eight Fallacies of Distributed Computing, 1994, 
https://nighthacks.com/jag/res/Fallacies.html
[8]: Arnold Franke, Team Cognitive Load, Objektspektrum 01/2022, 
https://media.synyx.de/publications/Arnold_Franke_Team_Cognitive_Load.pdf
[9]: DDD Crew, Welcome to DDD, 2022, https://github.com/ddd-crew/welcome-to-ddd
[10]: Alberto Brandolini, Event Storming, 2021
[11]: Matthew Skelton, Manuel Pais, Team Topologies, 2019
[12]: Vaughn Vernon, Tomasz Jaskula, Strategic Monoliths and Microservices, 2021
[13]: TNG Technology Consulting, ArchUnit, 2025, https://www.archunit.org/
[14]: Oliver Drotbohm, Spring Modulith, 2025, https://spring.io/projects/spring-modulith
[15]: Arnold Franke, Architekturpatterns in Modulithen, Java Magazin 12/20+01/21+02/21, 
https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-1.pdf, 
https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-2.pdf, 
https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-3.pdf
[16]: Oliver Fischer, Gut dokumentiert: Architecture Decision Records, 2020, 
https://www.heise.de/hintergrund/Gut-dokumentiert-Architecture-Decision-Records-4664988.html

https://www.f5.com/pdf/infographic/NGINX-survey-infographic_2020.pdf
https://www.f5.com/pdf/infographic/NGINX-survey-infographic_2020.pdf
https://www.heise.de/hintergrund/Gut-dokumentiert-Architecture-Decision-Records-4664988.html
https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-1.pdf,%20https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-2.pdf,%20https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-3.pdf
https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-1.pdf,%20https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-2.pdf,%20https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-3.pdf
https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-1.pdf,%20https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-2.pdf,%20https://media.synyx.de/publications/Architekturpatterns-in-Modulithen-3.pdf
https://spring.io/projects/spring-modulith
https://www.archunit.org/
https://github.com/ddd-crew/welcome-to-ddd
https://media.synyx.de/publications/Arnold_Franke_Team_Cognitive_Load.pdf
https://nighthacks.com/jag/res/Fallacies.html
https://www.melconway.com/Home/Conways_Law.html
https://www.researchnester.com/reports/microservices-orchestration-market/6991
https://kong-mwe-web-assets.s3-accelerate.amazonaws.com/wp-content/uploads/2019/12/Digital-Innovation-Benchmark-2020-Report.pdf
https://kong-mwe-web-assets.s3-accelerate.amazonaws.com/wp-content/uploads/2019/12/Digital-Innovation-Benchmark-2020-Report.pdf
https://kong-mwe-web-assets.s3-accelerate.amazonaws.com/wp-content/uploads/2019/12/Digital-Innovation-Benchmark-2020-Report.pdf
https://www.gartner.com/peer-community/oneminuteinsights/omi-microservices-architecture-have-engineering-organizations-found-success-u6b
https://www.gartner.com/peer-community/oneminuteinsights/omi-microservices-architecture-have-engineering-organizations-found-success-u6b
https://www.oreilly.com/radar/microservices-adoption-in-2020/

